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Effective forces between macroions in highly charged colloidal suspensions
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It is shown based on the systematic theory recently developed for charge-stabilized colloidal suspensions of
interacting Brownian particles with Coulomb interactions that the effective force between highly charged
colloidal macroions can be written as

Feff~r!5kBTZ2lB
2$Z2 exp@2~Z/q!1/2r /lD#2q2 exp~2r/lD!%~r /r 4!,

wherelD5(4pncq
2l B)21/2 is the Debye screening length,Ze the charge of macroions,2qe the charge of

counterions,l B the Bjerrum length, andnc the number density of counterions. This force consists of two parts.
The first part results from the long-range, Coulomb interactions between macroions and is repulsive over a
short range of distances between macroions. The second part results from the pair correlations due to the
long-range, Coulomb interactions between macroions and counterions and is attractive over a broad range of
distances between macroions. This force is expected to describe the ordering phenomena in highly charged
colloidal suspensions.@S1063-651X~99!50903-3#

PACS number~s!: 82.70.Dd, 05.40.1j, 61.20.Gy, 64.70.Pf
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In recent years, there has been considerable experim
and theoretical interest in an understanding of the mec
nism for ordering in charged colloids@1#. Charge-stabilized
colloidal suspensions have been found experimentally to
hibit a rich variety of crystalline, liquidlike, and amorphou
phases@2,3#. Many theoretical investigations to understa
these phase behavior have been done by using the Derja
Landau-Verwey-Overbeek~DLVO! theory @4#. For the last
decade, however, there has been growing evidence for
existence of a long-range, attractive interaction betw
macroions@2,5#, which cannot be explained by the DLVO
theory. There are several proposals for an explanation of
attractive interaction~see, for example,@6#!. In this paper, we
propose an effective potential that has an attractive minim
at long interparticle distances, based on the systematic th
recently developed for highly charged colloidal suspensi
@7#. Thus, we show that the pair correlation due to ma
body, long-range Coulomb interactions between macroi
and counterions leads to an effective, long-range attrac
force, while the pair correlation due to many-body, lon
range Coulomb interactions between macroions leads to
effective, short-range repulsive force.

We consider a three-dimensional charged colloidal p
ticles suspended in a polar solvent. In the following, we
strict ourselves to the simple case in which the concentra
of added salt is ignored. Thus, the system consists of
ionized spherical particles in an incompressible fluid w
viscosityh and the static dielectric constant«: the macro-
ions of radiusa, massm, chargeZe, and position vector
X i(t) ( i 51,2, . . . ,Nm) with the number densitynm
5Nm /V, and the counterions of radiusac , massmc , and
charge2qe with the number densitync5Nc /V, whereV is
the total volume of the system. Here the global charge n
trality requires thatZnm5qnc . In the absence of added sa
one can assume the following pair interaction potent
Vmm(r ), Vmc(r ), Vcc(r ) between macroions and counterio
@8#: bVmm(r )5Z2l B /r for r .2a and ` for r<2a,
bVmc(r )52ZqlB /r for r .a1ac and` for r<a1ac , and
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bVcc(r )5q2l B /r , for r .2ac and` for r<2ac , wherer is
the interparticle distance,l B5e2/«kBT the Bjerrum length,
andb51/kBT. In the following, we also restrict ourselves t
the special case wherea/ac@1, m/mc@1, and Z/q@1.
Hence, it is a reasonable approximation to neglect the siz
counterions as compared to that of macroions, i.e., to t
the counterions as pointlike particles withac50. The fluctu-
ating velocity field of the fluid is assumed to be described
the fluctuating, linear Navier-Stokes equation, supplemen
by stick boundary conditions at the surfaces of the spher

For simplicity, in the following we neglect the hydrody
namic interactions between macroions since their effects
small for largeZ @7#. Then, the system has two macroscop
characteristic lengths:a and lD5(4pncq

2l B)21/2

5a/(3fG)1/2, wheref54pa3nm/3 is the volume fraction
of macroions, andG5ZqlB /a the dimensionless coupling
parameter between macroions and counterions. For hig
charged suspensions, therefore, we have three characte
times: the relaxation time of the momentum contained
the fluid volume of sizea, t f;ra2/h; the Brownian relax-
ation time of macroions,tB;m/(6pha); the structural re-
laxation time,ts;a2/D0 , which is a time required for a
macroion to diffuse over a distancea, wherer is the fluid
mass density, andD0 the single-macroion diffusion coeffi
cient. For largeZ, we havelD@a, and ts@tB@t f . De-
pending on the space-time scales, therefore, there are
characteristic stages: a kinetic stage~K! where the space
time cutoff (xcutoff ,tcutoff) is set aslD@xcutoff@a and tB
@tcutoff@t f , and a suspension-hydrodynamic stage~SH!,
wherexcutoff@lD and ts>tcutoff@tB . In the following, we
only discuss the SH stage.

Let us define the single-macroion number density by

N~r ,t !5(
i 51

Nm

d„r2X i~ t !…. ~1!

Then, the number densityN(r ,t) can be split up into the
average number densityn(r ,t)5N(r ,t) and a fluctuating
R2550 ©1999 The American Physical Society



w
e

a

io

e-
ce

h
ty

of
cr

ac-

cro-
ac-

he
ge.

ng

for
be-

c-
f.
-

RAPID COMMUNICATIONS

PRE 59 R2551EFFECTIVE FORCES BETWEEN MACROIONS IN . . .
partdN(r ,t) asN(r ,t)5n(r ,t)1dN(r ,t), where the bar de-
notes an average over a suitable initial ensemble. As
shown in Ref.@7#, in the SH stage on the time scale of ord
tS , the diffusion equation forn(r ,t) can be written, up to
lowest order in¹ andf, as

]

]t
n~r ,t !5D0¹2n~r ,t !2D0“•C~r ,t ! ~2!

with the correlation term of orderf1/2,

C~r1 ,t !5b H E dr2u~ ur12u22a!F12
mmHmm~r1 ,r2 ,t !

1E dr2
cu~ ur12r2

cu2a!F12
mcHmc~r1 ,r2

c ,t !J ,

~3!

wherer i
c denotes the position of counterioni, Fi j

mm andFi j
mc

the Coulomb forces between macroions and counterions,
r125r12r2 . Here the step functionu(r ) arises from the fact
that the particles are supposed to be nonoverlapping;u(r )
51 for r>0 andu(r )50 for r ,0. The termHmm(r1 ,r2 ,t)
represents the pair correlation function between macro
separated by a distance of orderlD , while the term
Hmc(r1 ,r2

c ,t) represents the pair correlation function b
tween macroions and counterions separated by a distan
order lD . The functionsHmm(r1 ,r2 ,t) and Hmc(r1 ,r2

c ,t)
obey, to lowest order in“2 , “2

c , andf,

]

]t
Hmm~r1 ,r2!5D0~11e12!H“2

2Hmm~r1 ,r2!

2b“2FF21
mmn~r 2!n~r1!

1E dr3
cF23

mcnc~r2
c!Hmc~r1 ,r3

c!

1E dr3F23
mmn~r2!Hmm~r1 ,r3!G J , ~4!

]

]t
Hmc~r1 ,r2

c!5D0
c~11e12!H“2

c2Hmc~r1 ,r2
c!

2b“2
cFF21

cmnc~r2
c!n~r1!

1E dr3F23
cmnc~r2

c!Hmm~r1 ,r3!

1E dr3
cF23

ccnc~r2
c!Hmc~r1 ,r3

c!G J
1O~D0 /D0

c!, ~5!

whereD0
c is the single-counterion diffusion coefficient wit

D0
c5(a/ac)D0(@D0), nc(r2

c ,t) the average number densi
of the counterions,ei j the exchange operator betweeni andj,
and“2

c5]/]r2
c . Here we should note that the last term

Eq. ~4! screens the long-range interactions between ma
ions with the length of order (q/Z)1/2lD , while the last term
as
r

nd

ns

of

o-

of Eq. ~5! screens the long-range interactions between a m
roion and a counterion with the length of orderlD . Here we
should note that in order to derive Eq.~3!, we have neglected
the terms due to the short-range interactions between ma
ions since they lead only to corrections at small volume fr
tions.

We next discuss the asymptotic solutions of Eqs.~4! and
~5! in the SH stage, where the length scaleur1u of interest is
longer thanlD , and the time scale is of ordertS , while the
interparticle distances,ur12r2u and ur12r2

cu, are of order
lD . On the length scale longer thanlD , one can further
expand n(r2 ,t) and nc(r2

c ,t) about r1 . Since D0 /D0
c

5a0 /a!1, the dynamics of the counterions surrounding t
macroions follows the motion of the macroions in this sta
Hence, one can also assume thatnc(r ,t).(Z/q)n(r ,t).
Since we can put]Hmm/]t5]Hmc/]t.0 on the time scale
of order tS , from Eqs.~4! and ~5!, we thus find, to lowest
order in“ andq/Z,

Hmm~r1 ,r2 ,t !52
ZqlB
r 12

S Z

qD 2

exp@2r 12/lm~r 1 ,t !#n~r1 ,t !

3~11r21•“1!n~r1 ,t !, ~6!

Hmc~r1 ,r2
c ,t !5

ZqlB
ur12r2

cu
exp@2ur12r2

cu/l~r 1 ,t !#n~r1 ,t !

3$11~r2
c2r1!•“1%n~r1 ,t !, ~7!

with the screening length

l~r ,t !5@4pn~r ,t !ZqlB#21/25a/@3F~r ,t !G#1/2, ~8!

where F(r ,t)5(4p/3)a3n(r ,t) denotes the local volume
fraction of macroions, andlm(r ,t)5(q/Z)1/2l(r ,t). Use of
Eqs.~3!, ~6!, and~7! then leads to

C~r1 ,t !5~ZlB!2E dr2u~r 1222a!
r12

r 12
4

3@Z2 exp$2r 12/lm~r 1 ,t !%

2q2 exp$2r 12/l~r 1 ,t !%#

3n~r1 ,t !r21•“1n~r1 ,t !. ~9!

Although the contribution from the termHmm can be negli-
gible for largeZ, we have retained it in Eq.~9! to find a
reasonable force which should be valid not only for the lo
distance but also for the short distance. For largeZ, one can
obtain C(r ,t).G3/2A3F(r ,t)“n(r ,t). Use of Eq.~2! then
leads to the nonlinear deterministic diffusion equation
n(r ,t) in the absence of the hydrodynamic interactions
tween macroions

~]/]t !n~r ,t !5¹•@DS~F~r ,t !!“n~r ,t !# ~10!

with the self-diffusion coefficient DS(F)5D0@1
2G3/2A3F#, which leads to the glass transition volume fra
tion fg5(1/3)G23. Here we note that as was shown in Re
@7#, fg is slightly modified by the hydrodynamic interac
tions.



t

-

.

o
an
he

n
p

rm

f
ad
,

e
ive
ar-

h
ime
q.

tate

as

um

-

xist

RAPID COMMUNICATIONS

R2552 PRE 59MICHIO TOKUYAMA
We now discuss the effective forces. LetFeff(rij ,t) denote
the effective force between macroionsi andj at timet. In the
absence of hydrodynamic interactions, one can then write
Langevin equations for the position of macroioni, on the
timescale of ordertS , as

d

dt
X i~ t !5D0 (

j ~Þ i !

Nm

bFeff~ uX i j ~ t !u,t !1Ri~ t !, ~11!

whereX i j (t)5X i(t)2X j (t), andRi(t) represents the Gauss
ian, Markov random force and satisfies

^Ri~ t !&50,
~12!

^Ri~ t !Rj~ t8!&52D0d~ t2t8!d i , j1.

By taking the time derivative of Eq.~1! and then using Eq
~11!, we obtain

]

]t
n~r1 ,t !5D0“1

2n~r1 ,t !2D0“1•E dr2u~r 12

22a!Feff~r 12,t !@n~r1 ,t !n~r2 ,t !

1G2~r1 ,r2 ,t !#, ~13!

where the pair correlation function between macroions,G2 ,
is given by

G2~r1 ,r2 ,t !5dN~r1 ,t !dN~r2 ,t !2d~r12r2!n~r1 ,t !.
~14!

Here we should note that in order to derive the first term
Eq. ~13!, we have averaged out the terms including the r
dom force by employing the formulation introduced by t
present author@9# and retained the terms up to order“

2.
The pair correlation functionG2 obeys the same equatio

as Eq.~4! without the term related to the counterions, exce
that Hmm andF12 are now replaced byG2 andFeff, respec-
tively. On the length scale longer thanlD , therefore,G2 can
be safely negligible compared to the leading te
n(r1 ,t)n(r2 ,t) in Eq. ~13! for largeZ since it is screened by
the length of orderlm (!lD), similar to Eq.~6!. By com-
paring Eq.~2! with Eq. ~9! to Eq. ~13!, we thus find

Feff~r 12,t !5kBTZ2l B
2@Z2 exp$2r 12/lm~r 1 ,t !%

2q2 exp$2r 12/l~r 1 ,t !%#~r12/r 12
4 !. ~15!

The first term of Eq.~15! is repulsive over a short range o
order lm , while the second term is attractive over a bro
range of orderl. SinceFeff(r12,t) is the conservative force
one can also find the potential energyU(r 12,t) through the
relationFeff(r12,t)52“12U

eff(r12,t) as
he

f
-

t

Ueff~r 12,t !5
1

2
kBTZ2l B

2

3FZ2H S 1

r 12
2

1

lm~r 1 ,t ! D exp@2r 12/lm~r 1 ,t !#

r 12

2
1

lm~r 1 ,t !2 Ei@2r 12/lm~r 1 ,t !#J
2q2H S 1

r 12
2

1

l~r 1 ,t ! D exp@2r 12/l~r 1 ,t !#

r 12

2
1

l~r 1 ,t !2 Ei@2r 12/l~r 1 ,t !#J G , ~16!

where Ei(2x)52*x
`e2s/s ds. Because of the long-rang

attractive term in addition to the repulsive term, the effect
potential can have an attractive minimum at long interp
ticle distances, depending on the values ofZ andf. Here we
note that if the system is initially out of equilibrium, bot
effective force and potential depend on space and t
through F(r ,t), whose time evolution is described by E
~10!.

For long times, the system reaches the equilibrium s
where F(r ,`)5f. Hence, we havel(r ,`)5lD and
lm(r ,`)5(q/Z)1/2lD . In Fig. 1 we show the equilibrium
potential energyUeq

eff(r), where the parameters are chosen
q51, a555.4 nm andl B57.29 Å at T5293 K @10#. The
depth of the potential well becomes large and the minim
position of the potential decreases either asZ increases with
fixed f ~see curvesa and c! or asf increase with fixedZ
~see curvesb, c, andd!. Even for sufficiently dilute suspen
sions, the depth can be finite ifZ is large enough~see curve
e!. Hence, several phase behavior would be expected to e

FIG. 1. Effective potentialUeq
eff(r) in units ofkBT vs r in units of

a for different suspension parameters (Z,f); ~a! ~360, 0.0074!, ~b!
~280,0.01!, ~c! ~280,0.0074!, ~d! ~280,0.002!, and~e! ~900,0.0002!,
where the other parameters are chosen asq51, a555.4 nm, and
l B57.29 Å atT5293 K.
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since the macroions can get trapped in the potential w
depending the values ofZ andf.

In conclusion, we have found the effective force given
Eq. ~15! and also the effective potential given by Eq.~16! for
highly charged colloidal suspensions. The correlatio

among macroions and counterions separated by a distan
orderlD have been shown to be an origin of the long-ran
attractive interactions between macroions. This effective
ll,

s

of
,
-

tential is thus expected to explain the experimental obse
tions which suggest a long-range attractive interaction. T
Brownian dynamics simulation of Eq.~11! is now in
progress. The ordering phenomena in charged colloidal
pensions with the effective forceFeff(r,t) will be discussed
elsewhere.
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ence, Tohwa University.
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